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Recently, by analyzing the measurement data of Nikuradze �NACA Tech. Memo No. 1292 �1950��, it has
been proposed �N. Goldenfeld, Phys. Rev. Lett. 96, 044503 �2006�� that the friction factor, f , of rough-pipe
flow obeys a scaling law in the turbulent regime. Here, we provide a phenomenological scaling argument to
explain this law and demonstrate how intermittency modifies the scaling form, thereby relating f to the
intermittency exponent, �. By statistically analyzing the measurement data of f , we infer a satisfactory estimate
for � ��0.02�, the inclusion of which is shown to improve the data-collapse curve. This provides empirical
evidence for intermittency other than the direct measurement of velocity fluctuations.
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I. INTRODUCTION

A major aspect of fully developed turbulence is the exis-
tence of universal scaling laws in the so-called inertial-range
scales, ld� l� l0, l0 �ld� being the length scale of the ener-
getic �dissipative�-range eddies. In particular, the scaling be-
havior of the second-order velocity structure function under
the Kolmogorov refined similarity hypothesis �1� is ex-
pressed as

��vl
2� � ���l�l�2/3 � l2/3+�, �1�

where ��l� is the average dissipation rate over a sphere of
size l and � is the intermittency exponent, whose value is
considered universal.

An important physical quantity in rough-pipe flow is the
friction factor, f , which is related to the pressure drop across
the pipe according to the Darcy-Weisbach formula �see e.g.
�2��. The friction factor is a function of the Reynolds number,
Re, of the flow and the relative roughness, r

R , of the pipe �r
being the average size of the roughness elements and R, the
radius of the pipe�. f can be expressed in terms of the wall
stress, �, as f = 8�

�V2 , where � is the density and V is the cross-
sectional average of the mean-time-average velocity of the
flow.

In a seminal series of experiments on rough-pipe turbu-
lence that has remained a benchmark in the field, Nikuradze
�3� elucidated how f� r

R ,Re� depends on its arguments. His
data were presented as six curves, which are shown in Fig. 1.
The main features of these plots are as follows. Up to Re
�3300, the flow is still laminar and f � 1

Re. This, of course,
corroborates the exact result f = 64

Re, obtained from the Navier-
Stokes equation. At Re�3500, the entire curve plunges to
the “smooth-pipe zone” in accord with Blasius’s scaling
�4,5�, f �Re−1/4. Here the friction factor is independent of
boundary roughness, due to the existence of a sufficiently
thick viscous sublayer near the wall that screens the rough-
ness elements from the turbulent flow. As Re increases, the
roughness elements become progressively exposed to the tur-
bulent flow and, at large enough Re, the flow enters the

“rough-pipe zone”, where the friction factor becomes depen-
dent only on boundary roughness in accord with Strickler’s
law �6�, f �� r

R �1/3. These general characteristics can also be
seen in other pipe �7–9� and open-channel �2,10� flow data.

Recently, Goldenfeld pointed out �11� that Nikuradze’s
data conform to the scaling form

f = Re−1/4g	 r

R
Re3/4
 , �2�

where the scaling function g�x� has the asymptotic behavior

g�x� � �const., x → 0

x1/3, x → �
,

and data collapse for f Re1/4 versus r
R Re3/4 occurs for data

that lie between the Blasius and Strickler regimes. The re-
sidual deviation of data collapse from the scaling form �2�,
apart from uncertainties in the data, may also reflect some-
thing more fundamental �11�. Here, we address the question
as to what extent �if any� intermittency corrections, which
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FIG. 1. Friction factor, f , of rough pipe flow versus Reynolds
number, Re, for different values of relative roughness, r

R , in Ni-
kuradze’s experiment.
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have not been included in the original analysis, improve the
data-collapse curve.

Although turbulent flow in a pipe is anisotropic and inho-
mogeneous, Kolmogorov’s theory, which rests on the as-
sumptions of isotropy and homogeneity, still applies �12–16�.
Here, using Eq. �1�, we provide a scaling argument to ex-
plain the scaling form �2� and demonstrate how it is modified
by intermittency, thereby relating f to �. The measurement
data of f can then be utilized to infer the numerical value of
�, the inclusion of which is shown to improve the data-
collapse curve. By statistically analyzing Nikuradze’s data,
we thus obtain an estimate for � ��0.02� that reconciles with
the available values �1,17–21�. This provides empirical evi-
dence for intermittency other than the direct measurement of
velocity fluctuations.

II. PHENOMENOLOGICAL SCALING ARGUMENT

The shear stress exerted by the flow on the wall of the
pipe scales as �12,13� ���Vvr, where vr=���vr

2� is the ve-

locity of eddies of length scale r, the size of roughness ele-
ments. �Such eddies have a dominant role in the momentum
transfer to the wall �12,13�.� Thus, the friction factor can be
written as f � vr

V and hence from Eq. �1�, f �r� where
�= 1

3 + �
2 . Let us now rescale such that r→ lr. Under this

rescaling, we have f → l�f . Moreover, for l	1 �l
1�, the
rescaling results in a mere amplification �deamplification� of
roughness elements, without changing their geometry,
thereby rendering the roughness to be exposed to the
turbulent flow at lower �higher� Re. Thus, under the rescaling
r→ lr, we expect the same flow, albeit with Re→ l−� Re,
where �	0.That is, under rescaling,

f	 r

R
,Re
 → f	l

r

R
,l−� Re
 .

Collecting results, we therefore have

f	l
r

R
,l−� Re
 = l�f	 r

R
,Re
 . �3�

Equation �3� indicates that f is a generalized homoge-
neous function of its arguments in the inertial range and the
behavior is self-affine. We can expound further on the expo-
nent �, if we bear in mind that we are considering boundary
layer turbulence. The turbulent transfer of momentum to the
boundary wall by eddies, which predominantly takes place
on length scale r �the size of dominant eddies�, gives rise to
an extra �eddy� viscosity near the wall. The effective
viscosity in the boundary layer, therefore, scales as
�rvr �length � velocity�, i.e., as �r�+1. Hence on rescaling,
Re→ l−�−1 Re, i.e., �=�+1= 4

3 + �
2 and Eq. �3� reads

f	l
r

R
,l−�−1 Re
 = l�f	 r

R
,Re
 . �4�

Goldenfeld’s scaling form �2� is just a particular form of Eq.
�4�, which can be obtained by taking l=Re1/��+1� and �=0, of
course. In the presence of intermittency, the scaling form
thus becomes

f = Re−�2+3��/�8+3��g	 r

R
Re6/�8+3��
 , �5�

where asymptotically,

g�x� � � const., x → 0

x1/3+�/2, x → � .

Note that the Blasius and Strickler laws are, therefore, modi-
fied according to

f � Re−�2+3��/�8+3��, f � 	 r

R

1/3+�/2

,

respectively. The above modified Strickler formula coincides
�to lowest order� with the result obtained by Gioia et al. �12�.
The modified Blasius formula, however, does not. The
source of discrepancy lies in their application of the expres-
sion Re−3/4 for the Kolmogorov scale, which is invalid when
the intermittency exponent is nonzero. The correct expres-
sion is Re−6/�8+3��, the application of which would have had
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FIG. 2. �Color online� Exponential regression model. Best data
correlation is obtained for the value �=0.02 �top�, resulting in the
best data collapse �bottom�.
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resulted in the same modified Blasius formula as given above
�22�.

Scaling form �5� relates the friction factor to the intermit-
tency exponent and provides ground for the estimation of the
latter via empirical data other than the direct measurement of
velocity fluctuations.

III. ESTIMATION OF THE INTERMITTENCY EXPONENT

Having established Eq. �5�, we proceed to infer the value
of � from the measurement data of f . To this end, we plot
f Re�2+3��/�8+3�� versus r

R Re6/�8+3�� for different trial values
of � and examine the resulting data collapse by applying
regression analysis �see e.g. �23��. The best value for � is
one that will result in the highest possible data correlation,
i.e., the smallest possible data scatter �deviations from data-
collapse curve�. The data correlation coefficient, �, is defined
by the fraction of the total variation �sum of squares� of data,
y, that is explained by the regression model �fitting curve�,
according to

�2 =
 �ŷ − ȳ�2

 �y − ȳ�2
.

Here ȳ represents the average of data values, y, and ŷ are
their estimated values based on the regression curve. The

closer � is to 1, the more correlated the data, and the better
the regression. For a given regression model, we therefore
examine the variation of � with �; the best estimate of � is
the one that yields the correlation coefficient closest to 1.
Now, the polynomial regression is suitable for nonlinear data
curves that show a maximum/minimum and the absence of
this feature in the data-collapse curve, as shown in Fig. 2 of
reference �11� �a nonzero value of � does not change this
feature�, renders the polynomial model irrelevant. We, there-
fore, resort to the exponential regression model, the result of
which is presented in Fig. 2. The estimated value of � thus
obtained is 0.02, which agrees with the generally expected
range of values ��0.02–0.03� reported in the literature
�1,17–21�. That is to say, Nikuradze’s data set �3� best con-
forms to ��0.02 and not, in particular, to �=0. It is rather
interesting that large-scale properties, such as friction fac-
tors, can provide evidence for intermittency, which is a direct
manifestation of small-scale statistics. This and similar pre-
vious observations �24� embody deep connections between
spectral structure and the global properties of turbulent sys-
tems.
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